epsie.samplers package
Submodules
epsie.samplers.base module
Base class and functions for samplers.
- class epsie.samplers.base.BaseSampler[source]
Bases:
abc.ABC
Base class for samplers.
- property acceptance
The history of all acceptance stats from all of the chains.
- property blobs
The history of all of the blobs from all of the chains.
- property chains
List of the chains used.
- checkpoint(fp, path=None, dsetname='sampler_state')[source]
Save the sampler’s state to an HDF file.
- Parameters
fp (:py:class:h5py.File) – Open file handler to an hdf5 file. The file handler must have write permission.
path (str, optional) – What group to write the state to in the hdf file. Default is the top-level.
dsetname (str, optional) – The name of dataset to store the state to. Default is “sampler_state”.
- property current_blobs
The current blob data.
This will default to the blob data of the start positions if the chains haven’t been run yet.
- property current_positions
The current position of the chains.
This will default to the start position if the chains haven’t been run yet.
- property current_stats
The current stats of the chains.
This will default to the stats of the start positions if the chains haven’t been run yet.
- property lastclear
The iteration that the last clear occurred at.
- property model
The model used.
- property nchains
The number of chains being used.
- property niterations
The number of iterations the chains have been run for.
- property parameters
The sampled parameters as a tuple.
- property pool
The pool being used for parallelization.
- property positions
The history of positions from all of the chains.
- property proposals
List of the proposals used for the sampled parameters.
- run(niterations)[source]
Evolves all of the chains by niterations.
- Parameters
niterations (int) – The number of iterations to evolve the chains for.
- property seed
The seed used for the random bit generator.
- set_proposals(proposals=None, default_proposal=None, default_proposal_args=None)[source]
Sets the proposals for all parameters.
If no proposals are given for one or more parameters, the default proposal will be used for them.
- Parameters
proposals (list, optional) – A list of
proposals.BaseProposal
instances. If none provided, will use thedefault_proposal
for all parameters.default_proposal (proposals.BaseProposal type class, optional) – The default proposal class to use for parameters that are not specified in
proposals
. Default (None) is to useproposals.Normal
.default_proposal_args (dict, optional) – Dictionary of keyword arguments to pass to the default proposal when initializing.
- set_state(state)[source]
Sets the state of the all of the chains.
- Parameters
state (dict) – Dictionary mapping chain id to the state to set the chain to. See
chain.Chain.set_state()
for details.
- set_state_from_checkpoint(fp, path=None)[source]
Loads a state from an HDF file.
- Parameters
fp (:py:class:h5py.File) – Open file handler to an hdf5 file.
path (str, optional) – What group to store the file to in the hdf file. Default is the top-level (‘/’).
- property start_position
The start position of the chains.
Will raise a
ValueError
isset_start
hasn’t been run.- Returns
Dictionary mapping parameters to arrays with shape
nchains
giving the starting position of each chain.- Return type
- property state
The state of all of the chains.
Returns a dictionary mapping chain ids to their states.
- property stats
The history of stats from all of the chains.
epsie.samplers.mhsampler module
- class epsie.samplers.mhsampler.MetropolisHastingsSampler(parameters, model, nchains, proposals=None, default_proposal=None, default_proposal_args=None, seed=None, pool=None)[source]
Bases:
epsie.samplers.base.BaseSampler
A standard Metropolis-Hastings sampler.
- Parameters
parameters (tuple or list) – Names of the parameters to sample.
model (object) – Model object.
nchains (int) – The number of chains to create. Must be greater than zero.
proposals (list, optional) – List of proposals to use. Any parameters that do not have a proposal provided will use the
default_propsal
.default_proposal (an epsie.Proposal class, optional) – The default proposal to use for parameters not in
proposals
. Default isepsie.proposals.Normal
.default_proposal_args (dict, optional) – Dictionary of arguments to pass to the default proposal.
seed (int, optional) – Seed for the random number generator. If None provided, will create one.
pool (Pool object, optional) – Specify a process pool to use for parallelization. Default is to use a single core.
epsie.samplers.ptsampler module
Classes for parallel tempered Markov chains.
- class epsie.samplers.ptsampler.ParallelTemperedSampler(parameters, model, nchains, betas, swap_interval=1, proposals=None, adaptive_annealer=None, default_proposal=None, default_proposal_args=None, seed=None, pool=None)[source]
Bases:
epsie.samplers.base.BaseSampler
Evolves a collection of parallel tempered Markov chains.
- Parameters
parameters (tuple or list) – Names of the parameters to sample.
model (object) – Model object.
nchains (int) – The number of chains to create per temperature. Must be greater than zero.
betas (numpy.ndarray of floats) – The betas (= 1 / temperatures) to use. All betas must be between [0,1]. Must provide at least one. If one is not included in the betas, a warning will be printed.
swap_interval (int, optional) – How often to calculate temperature swaps. Default is 1 (= swap on every iteration).
proposals (list, optional) – List of proposals to use. Any parameters that do not have a proposal provided will use the
default_propsal
.default_proposal (an epsie.Proposal class, optional) – The default proposal to use for parameters not in
proposals
. Default isepsie.proposals.Normal
.default_proposal_args (dict, optional) – Dictionary of arguments to pass to the default proposal.
seed (int, optional) – Seed for the random number generator. If None provided, will create one.
pool (Pool object, optional) – Specify a process pool to use for parallelization. Default is to use a single core.
- property betas
The betas used for each chain. Shape is (nchains, ntemps). If temperatures are being dynamically adjusted each chain will have a different set of temperatures.
- create_chains(nchains, betas, swap_interval=1, adaptive_annealer=None)[source]
Creates a list of
chain.ParallelTemperedChain
.- Parameters
nchains (int) – The number of parallel tempered chains to create.
betas (array) – Array of inverse temperatures to use for each parallel tempered chain.
swap_interval (int, optional) – How often to calculate temperature swaps. Default is 1 (= swap on every iteration).
adaptive_annealer (object, optional) – Adaptive anneler adjusting temperatures on the go. Default is None.
- property ntemps
Returns the number of temperatures used.
- property swap_interval
Returns the swap interval used for parallel tempering.
- property temperature_acceptance
The history of the temperature acceptance from all of the chains.
If ntemps is 1, just returns None.
Note
This does not return a structured array, since there is only one field.
- property temperature_swaps
The history of all the temperature swaps from all of the chains.
If ntemps is 1, just returns None.
Note
This does not return a structured array, since there is only one field.
- property temperatures
The temperatures used. Shape is (nchains, ntemps)